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This study presents age-based life-history information for the red lip parrotfish Scarus 20 

rubroviolaceus based on a 5 year sampling programme from the commercial fishery of American 21 

Samoa. Females reached sexual maturity at 31.9 cm fork length (LF) and 2.6 years and sex 22 

change occurred at 42.3 cm LF, although not all females change sex through their ontogeny. The 23 

maximum observed age was 14 years and c. 65% of the fishery harvest was above the median LF 24 

at sex change. 25 

 26 

 27 

Key words: American Samoa; life history; maturation; otoliths; parrotfish; reproductive biology.  28 

 29 

 30 

 31 

 32 

Parrotfishes (Labridae: tribe Scarinae) are a highly ubiquitous component of coral-reef faunal 33 

assemblages and bolster the functional diversity on reefs through processes of scraping and bio-34 

eroding benthic substrata (Bellwood & Choat, 1990; Bellwood 1995a,b). They are also highly 35 

prevalent components of reef-associated commercial, artisanal and subsistence fisheries 36 

throughout the tropics, with the majority of species being actively targeted. Larger-bodied 37 

parrotfish species are particularly vulnerable to overexploitation (Jennings et al., 1999; Hawkins 38 

& Roberts, 2003; Clua & Legendre, 2008; Mumby et al.; 2013 Taylor et al., 2014), but a dearth 39 

of location-specific life-history information often hinders stock assessment of this group. 40 

The redlip parrotfish Scarus rubroviolaceus Bleeker 1847 is a relatively large-bodied, 41 

dichromatic protogynous species that is broadly distributed from the Red Sea and eastern Africa 42 

across to the eastern Pacific Ocean (Fitzpatrick et al., 2011).  The species is common on fringing 43 

reefs characterized by high wave action (Taylor et al., 2015) and represents a major food 44 
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resource in many locations across its range. In the United States associated islands of the Pacific 45 

Ocean, S. rubroviolaceus is of prime importance to commercial fishers. It represents the highest 46 

landed scarid species by mass in Hawaii, the Commonwealth of the Northern Mariana Islands 47 

and American Samoa and is the third highest in Guam (Houk et al., 2012; DeMartini & Howard, 48 

2016; NOAA Commercial Fisheries Bio-Sampling Program, unpubl. data). Among these four 49 

locations, S. rubroviolaceus achieves the highest average density in American Samoa (CREP 50 

PIFSC, 2016), where the prevalence of low complexity fringing reef provides ideal habitat for 51 

the species across the Samoan Archipelago.  52 

Preliminary estimates of growth and life span for S. rubroviolaceus from American 53 

Samoa were presented by Page (1998) to bolster regional management efforts. The present study 54 

expands on this work by deriving life-history information of value to fisheries management 55 

based on fishery-dependent collections spanning a 5 year period. In particular, estimates of 56 

growth, life span, length and age at female maturation and length at sex change are presented. 57 

The findings are discussed with regard to regional management of the species and variation in 58 

life-history trait values across bio-geographic regions based on comparison with other studies.  59 

From October 2010 to September 2015, the coral-reef associated commercial fishery of 60 

Tutuila, American Samoa, was surveyed by Commercial Fisheries Bio-Sampling Program staff 61 

twice weekly (Sundberg et al., 2015). During sampling times, all landed fishes were identified to 62 

the lowest taxonomic level, measured to the nearest 0.1 cm fork length (LF) and weighed to the 63 

nearest g (total mass, MT). The majority of the species and individuals targeted in American 64 

Samoa commercial markets come from night-time spear fishing. A sub-sample of the harvested 65 

S. rubroviolaceus was purchased opportunistically and later processed for life-history analysis. 66 

Opportunistic purchasing was performed using a random sampling design so that resultant 67 

length-frequency distributions reflected those of the fishery. From each purchased specimen, 68 
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sagittal otolith pairs were extracted, cleaned and stored dry and gonads were extracted, 69 

macroscopically staged as male or female, weighed to the nearest 0.001 g (gonad mass, MG) and 70 

stored in 10% buffered formalin solution.  71 

Age was determined for specimens through interpretation of sectioned sagittal otoliths. 72 

One otolith from each pair was weighed to the nearest 0.0001 g and affixed to a glass slide using 73 

thermoplastic glue (Crystalbond 509, Aremco; www.aremco.com), with the primordium located 74 

just inside the edge of the slide and the sulcul ridge perpendicular to the slide edge. The otolith 75 

was ground to the slide edge using a 600 grit diamond lapping disc on a grinding wheel along the 76 

longitudinal axis. The otolith was then removed and re-affixed to a clean slide with the flat 77 

surface against the slide face and ground to produce a thin transverse section c. 200 µm thick, 78 

encompassing the core material. Finally, the exposed section was covered in thermoplastic glue 79 

to improve clarity of microstructures. Sections were examined twice and age in years was 80 

estimated by counting annuli (alternating translucent and opaque bands) along a consistent axis 81 

on the ventral side of the sulcul ridge, using transmitted light on a stereo microscope. When the 82 

two age estimates differed, a third blind read was conducted. Age in years was assigned when 83 

two age assignments agreed, which occurred for all specimens.  84 

Sex-specific and combined growth patterns were modelled using the von Bertalanffy 85 

growth function (VBGF), represented by 𝐿𝑡 = 𝐿∞ [1 − 𝑒−𝐾(𝑡−𝑡0)], where 𝐿𝑡 is the predicted LF 86 

(cm) at age 𝑡 (years), 𝐿∞ is the mean asymptotic LF, 𝐾 is the coefficient used to describe the 87 

curvature of growth towards  𝐿∞ and 𝑡0 is the theoretical age at which LF equals zero, as 88 

described by 𝐾. Fitted growth curves were constrained (y-intercept) to a common length at 89 

settlement taken as L0 = 1.5 cm LF (Bellwood & Choat, 1989). 90 

Gonad material from specimens was histologically processed at the University of Hawaii 91 

School of Medicine to validate macroscopic sex assignments and determine stages of maturation.  92 
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Sections of gonad were embedded in paraffin wax, sectioned transversely at 6 µm and stained on 93 

microscope slides with haematoxylin and eosin. Histological preparations were viewed under 94 

compound and dissecting microscopes and the developmental stages were classified using the 95 

standardized terminology of Brown-Peterson et al. (2011).  96 

Estimates of LF and age at 50% female sexual maturity (L50 and t50, respectively) and LF 97 

at 50% sexual transition (L� 50) from female to male were estimated based on histological features 98 

of gonad material. For L50, proportional frequencies of immature and mature females across 2 cm 99 

size classes were fitted with a logistic curve: 𝑝 = {1 + 𝑒[− ln(19) (𝐿 − 𝐿50)(𝐿95 −  𝐿50)−1]}−1, 100 

where 𝑝 is the predicted proportion of mature females at a given length (𝐿) and 𝐿50 and 𝐿95 are 101 

the LF at 50% and 95% maturity, respectively. Curves were fitted by minimizing the binomial 102 

maximum likelihood and corresponding 95% C.L. for each parameter were derived by bootstrap 103 

resampling through 1000 iterations. 104 

Spawning seasonality was investigated by plotting gonado-somatic index values [IG = 105 

MG(MT – MG)–1100] of mature female specimens across the calendar year. IG data from 2010 to 106 

2015 were aggregated by calendar month as interannual sample numbers were too small to detect 107 

reproductive patterns. Potential peaks in mean IG values were interpreted as increased 108 

reproductive activity. IG values were also regressed against lunar day for all mature female data 109 

combined to examine patterns across the lunar month. 110 

To examine geographic variability in age-based demography, estimates of life span 111 

(maximum age derived from otoliths of sampled specimens) and asymptotic LF (L�  from VBGF 112 

constrained to c. 1.2 to 2.0 cm LF y-intercept) were collated from American Samoa (present 113 

study), the northern Great Barrier Reef (Choat & Robertson, 2002; J. Choat, unpubl. data), Guam 114 

(Taylor & Choat, 2014), Hawaii (Howard, 2008; E. E. DeMartini, unpubl. data), Oman 115 

(Sabetian, 2010; J. Choat, unpubl. data), Seychelles (Grandcourt, 2002), Solomon Islands 116 
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(Sabetian, 2010), Taiwan (Sabetian, 2010; B. Taylor, unpubl. data) and Yap (B. Taylor, unpubl. 117 

data), spanning from 14.6° S to 22.6° N. Life span and asymptotic LF were regressed against 118 

satellite-derived sea surface temperature (SST, °C) from each location (2004–2009 monthly 119 

average, Pathfinder database 5.2; https://www.nodc.noaa.gov/SatelliteData/pathfinder4km/) to 120 

examine responses of each variable across the range of SST. 121 

In total, 4980 S. rubroviolaceus specimens were surveyed at the commercial market; 395 122 

were purchased for life-history analysis and biological materials were extracted from 273. Of 123 

these 273, only 236 otolith pairs and 172 gonads were obtained for laboratory processing. 124 

Because of these discrepancies, true randomness in the catch could not be assumed and therefore 125 

age structure or mortality information are not presented from catch curves. Purchased specimens 126 

ranged from 17.9 to 54.5 cm LF and 1 to 14 years of age. Males had a considerably greater mean 127 

LF at age, whereas sampled females comprised the only individuals (n = 3) recorded above 7 128 

years old (Fig. 1). The estimated 𝐿∞ for females and males was 40.6 and 47.8 cm LF, 129 

respectively, with a combined estimate of 42.7 cm LF for the species in American Samoa. Female 130 

S. rubroviolaceus reached reproductive maturity at 31.9 cm LF [L50; Fig. 2(a)] and 2.6 years [t50; 131 

Fig. 2(b)]. The species was found to change sex between c. 27 and 45 cm LF, with a L� 50 estimate 132 

of 42.3 cm LF [Fig. 2(c)]. A summary of growth, maturation and sex change model parameters 133 

with associated 95% C.L. is provided in Table I. The modal LF class harvested by the American 134 

Samoa commercial fishery between 2010 and 2015 was 37 cm. In total, 65% of harvested 135 

individuals were above L50 and 15% were above L� 50 [Fig. 2(d)].  136 

There was little evidence of strong seasonality in annual reproductive timing; however, IG 137 

plots suggested that reproductive activity gradually increased in winter months and was lowest in 138 

summer months (Fig. 3). There was no relationship identified between lunar period and mean IG 139 

value. 140 
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These results demonstrate that S. rubroviolaceus is a relatively longer-lived species 141 

compared with other parrotfishes and reaches its asymptotic length in c. 4–5 years. The 142 

maximum age of 14 years matches that previously reported by Page (1998) based on a limited 143 

fishery-independent sample from Tutuila. In the present study, only three individuals exceeded 7 144 

years of age, probably reflecting truncation of ages as a result of fishery selection and pressure. 145 

Hence, actual life span of the species in American Samoa may be greater than represented. The 146 

species reached 50% female maturity at 75% of its estimated asymptotic LF, which is similar to 147 

ratios from Hawaii (68%; Howard, 2008; DeMartini & Howard, 2016) and Guam (72%; Taylor 148 

& Choat, 2014) for the same species.  149 

The parameter values and confidence regions presented here have direct utility to stock 150 

assessment. Because final sample distribution from market sampling for life-history analysis was 151 

non-random, resultant age-frequency distributions did not reflect those of the fishery. Hence, 152 

reliable estimates of age-based mortality were not derived. The sampling programme, however, 153 

did derive five consecutive years of high-resolution length-frequency data that were 154 

representative of the commercial fishery market, thus providing a robust framework that could be 155 

applied through length-based assessment models to calculate spawner potential ratio (Nadon et 156 

al. 2015; Prince et al., 2015). Coupling the 2010–2015 data with similar market surveys 157 

conducted by Page (1998) in 1997–1998, suggests that both the mean and modal LF of harvested 158 

S. rubroviolaceus has gradually decreased across the near-two decade period, although not at the 159 

level observed in Guam, where the estimated annual decline in mean LF for S. rubroviolaceus 160 

was 3.4 times greater in magnitude (Taylor et al., 2014). This decrease was not reflected in 161 

comparison with proportional harvest frequencies between the two time periods where S. 162 

rubroviolaceus has consistently represented c. 20% of the parrotfish harvest. This is surprising 163 

given that the 1990s surveys were dominated by scuba spear-caught individuals, a method that 164 
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has since been banned (Green, 2003). Any sustained decline in mean length of a harvested 165 

species, however, warrants further investigation to ensure long-term sustainability (Jeffrey et al., 166 

2017). 167 

Despite five consecutive years of market sampling, little resolution was achieved to 168 

determine annual patterns of spawning periodicity. An increase in mean IG values during winter 169 

months (peak, July–August) suggests that reproductive activity may increase during this period, 170 

but it is clear that no stark peaks in reproduction occur temporally for this species. DeMartini & 171 

Howard (2016) demonstrated a pronounced peak in IG values for the same species during late 172 

winter in Hawaii, where temporally distinct patterns of reproduction would be more likely with 173 

increased seasonality at greater latitude (Conover, 1992). Most scarines have prolonged 174 

spawning seasons with reproductive events co-ordinated with outgoing tidal currents, but little 175 

else is known regarding reproductive cycles of S. rubroviolaceus (Colin & Bell, 1991). 176 

Although few detailed assessments of age-based demography have been published for S. 177 

rubroviolaceus, length-at-age estimates have been derived from across a wide geographic range. 178 

Existing data across nine distinct locations demonstrate considerable physiological responses in 179 

age-based demography to SST (Fig. 4). Estimates of both maximum observed age and 180 

asymptotic LF decreased with increasing SST, which conforms to metabolic theory in ectotherms 181 

across temperature gradients (Robertson et al., 2005; Trip et al., 2014). This relationship was 182 

significant (linear regression model, R2 = 0.47, F1,8 = 6.14, P < 0.05) for asymptotic length, but 183 

not for maximum age (R2 = 0.31, F1,8 = 3.13, P > 0.05). Variability in observed maximum age 184 

from the expected is probably influenced by inconstant fishing pressure among locations and 185 

potentially insufficient sample sizes for estimating life span at some locations. Size-selective 186 

fishing pressure has a direct influence on observed (but not metabolic) lifespan in populations 187 

and locations that are heavily fished or under-sampled increase the likelihood of underestimating 188 
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life span. Asymptotic LF is more robust to these issues, but is also heavily influenced in marine 189 

fishes by ocean productivity, which facilitates resource quantity and quality. For instance, the 190 

location with the largest positive residual (i.e. larger than predicted based on regression with 191 

SST) in Fig. 4(b) was the sample from Oman, where seasonal monsoon upwelling generates 192 

ocean productivity values (Savidge et al., 1990; measured as chlorophyll-a concentration) in the 193 

range of nine to 50 times higher than other locations presented here (data satellite-derived from 194 

the Aqua MODIS data base; https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MY1DMM_CHLORA). 195 

Compared with length-at-age information, much fewer data exist regarding the reproductive 196 

biology of S. rubroviolaceus from across its range. Similar variability in schedules of maturation 197 

and sex change, however, can be expected as those seen for length-at-age and life span because 198 

life-history traits are physiologically linked (de Magalhães et al., 2007). 199 

In summary, this study provided a robust demographic baseline for informing 200 

management of the most highly targeted parrotfish species in American Samoa and identified 201 

signs of decreasing LF over time in the fishery harvest. Further, it demonstrated that life-history 202 

traits vary widely across the geographic range of S. rubroviolaceus in relation to SST and 203 

potentially ocean productivity, a trend increasingly recognized for marine ectotherms. As a large-204 

bodied and heavily targeted species throughout much of its range, further demographic research 205 

is warranted to tease apart the influence of environmental and anthropogenic factors on life span, 206 

body size and schedules of maturation. 207 

 208 
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